Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
1.
Cell ; 185(4): 614-629.e21, 2022 02 17.
Article in English | MEDLINE | ID: covidwho-1676664

ABSTRACT

Activation of the innate immune system via pattern recognition receptors (PRRs) is key to generate lasting adaptive immunity. PRRs detect unique chemical patterns associated with invading microorganisms, but whether and how the physical properties of PRR ligands influence the development of the immune response remains unknown. Through the study of fungal mannans, we show that the physical form of PRR ligands dictates the immune response. Soluble mannans are immunosilent in the periphery but elicit a potent pro-inflammatory response in the draining lymph node (dLN). By modulating the physical form of mannans, we developed a formulation that targets both the periphery and the dLN. When combined with viral glycoprotein antigens, this mannan formulation broadens epitope recognition, elicits potent antigen-specific neutralizing antibodies, and confers protection against viral infections of the lung. Thus, the physical properties of microbial ligands determine the outcome of the immune response and can be harnessed for vaccine development.


Subject(s)
Adjuvants, Immunologic/pharmacology , Antigens, Viral/immunology , Candida albicans/chemistry , Mannans/immunology , Aluminum Hydroxide/chemistry , Animals , Antibodies, Neutralizing/immunology , Antibody Specificity/immunology , B-Lymphocytes/immunology , COVID-19/immunology , COVID-19/prevention & control , COVID-19/virology , Chlorocebus aethiops , Epitopes/immunology , Immunity, Innate , Immunization , Inflammation/pathology , Interferons/metabolism , Lectins, C-Type/metabolism , Ligands , Lung/immunology , Lung/pathology , Lung/virology , Lymph Nodes/immunology , Lymph Nodes/metabolism , Macrophages/metabolism , Mice, Inbred C57BL , Paranasal Sinuses/metabolism , Protein Subunits/metabolism , Sialic Acid Binding Ig-like Lectin 1/metabolism , Solubility , Spike Glycoprotein, Coronavirus/metabolism , T-Lymphocytes/immunology , Transcription Factor RelB/metabolism , Vero Cells , beta-Glucans/metabolism
2.
Proc Natl Acad Sci U S A ; 118(44)2021 11 02.
Article in English | MEDLINE | ID: covidwho-1470027

ABSTRACT

The pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has resulted in over 100 million infections and millions of deaths. Effective vaccines remain the best hope of curtailing SARS-CoV-2 transmission, morbidity, and mortality. The vaccines in current use require cold storage and sophisticated manufacturing capacity, which complicates their distribution, especially in less developed countries. We report the development of a candidate SARS-CoV-2 vaccine that is purely protein based and directly targets antigen-presenting cells. It consists of the SARS-CoV-2 Spike receptor-binding domain (SpikeRBD) fused to an alpaca-derived nanobody that recognizes class II major histocompatibility complex antigens (VHHMHCII). This vaccine elicits robust humoral and cellular immunity against SARS-CoV-2 and its variants. Both young and aged mice immunized with two doses of VHHMHCII-SpikeRBD elicit high-titer binding and neutralizing antibodies. Immunization also induces strong cellular immunity, including a robust CD8 T cell response. VHHMHCII-SpikeRBD is stable for at least 7 d at room temperature and can be lyophilized without loss of efficacy.


Subject(s)
COVID-19 Vaccines/immunology , COVID-19 Vaccines/pharmacology , COVID-19/immunology , COVID-19/prevention & control , Pandemics , SARS-CoV-2/immunology , Amino Acid Sequence , Animals , Antibodies, Neutralizing/biosynthesis , Antibodies, Viral/biosynthesis , Antigen-Presenting Cells/immunology , CD8-Positive T-Lymphocytes/immunology , COVID-19/epidemiology , COVID-19 Vaccines/administration & dosage , Camelids, New World/immunology , Female , Histocompatibility Antigens Class II/immunology , Humans , Immunity, Cellular , Immunity, Humoral , Immunization, Secondary , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Transgenic , Pandemics/prevention & control , Recombinant Fusion Proteins/administration & dosage , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/immunology , SARS-CoV-2/genetics , Single-Domain Antibodies/administration & dosage , Single-Domain Antibodies/immunology , Spike Glycoprotein, Coronavirus/administration & dosage , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology
SELECTION OF CITATIONS
SEARCH DETAIL